Lithium Exploration Recommendations for the QMETS James Bay Pontax Property

Introduction:

QMETS James Bay Pontax Property (the property), is a large land position in the underexplored area of Pontax Greenstone Belt, Kapiwak pluton, and Auclair Formation. The property consists of 101 mineral claims (table 1) and covers 5,376 hectares. The property is located in the Superior Province falling into the La Grande Geological Subprovince of the James Bay region of Quebec, Canada, and is a greenfield lithium pegmatite exploration project. The region, commonly referred to as the "Lithium Triangle," stands out because only a limited number of sources for lithium extraction are recognized through hard rock mining in North America.

Within this prominent zone, the property is strategically positioned in an exceptionally active and promising area for lithium exploration. The property is surrounded by other significant lithium plays including: the Patriot Battery Metals (PMET.V) Pontax project, the Brunswick Exploration (BRW.V), Stria Lithium (TSX.V:SRA) properties, and the Li-FT Power Ltd. (CSE: LIFT) large land package including the Moyenne Project. Located close to the Némiscau-La Grande boundary zone the property has similarities to the Allkem James Bay Lithium project ~40km to the north, with a published Mineral Resource Estimate of 40.3Mt at 1.4% Li2O and Ore Reserve of 37.2Mt at 1.3% Li2O. Notable transactions in the region include the Q2 Metals Mia property for \$500,000 cash, 13 million common shares, and \$1 million in work expenditures.

Project Goal:

The primary objective of the project is to create a lithium deposit exceeding 7 million metric tons (Mt) with a lithium oxide (Li2O) content of at least 1 wt. %. In addition to lithium exploration, there will also be a focus on investigating other rare earth elements due to their significance in the Canadian Critical Minerals Strategy, broad economic value, and their associated formation with lithium in fertile LCT pegmatites.

The Exploration Plan:

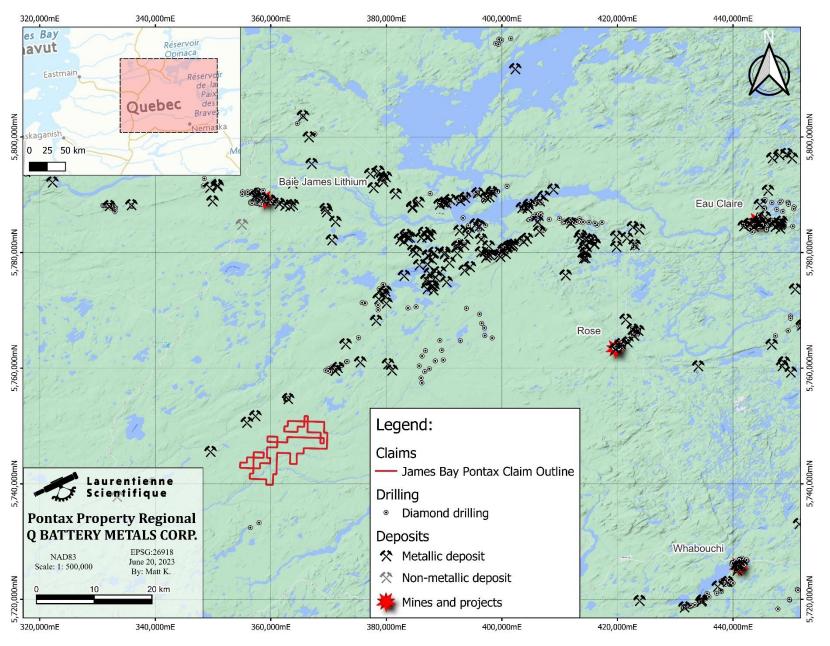
It is recommended to conduct a complete compilation of all available information, reports and historic data before field work commences. The area of the property is highly underexplored with minimal surface studies conducted but some regional studies have been completed. Once all the data has been compiled, initial targets can be generated and should be examined in the field through geological mapping and geochemical sampling programs. To effectively identify directional geochemical indicators towards LCT pegmatites, detailed mineralogical analyses and geochemical sampling of rocks, soils, and till samples are essential. Analyzing mineralogical phases, studying deportment and liberation characteristics, as well as examining geochemical metallogenic markers such as K/Rb, Nb/Ta, and Zr/Hf ratios, can help identify highly evolved

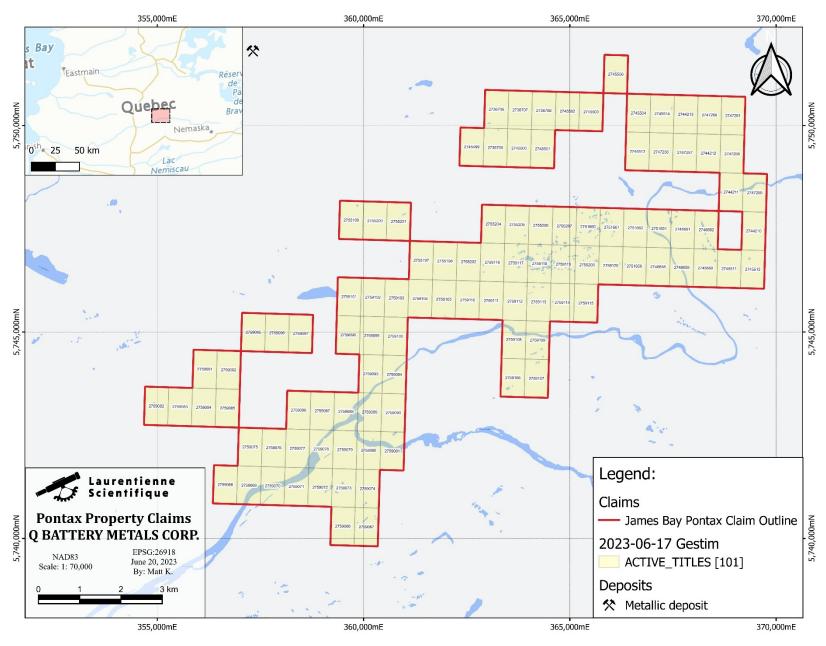
rocks that contain enriched incompatible elements (such as lithium, caesium, and tantalum) of significant economic value.

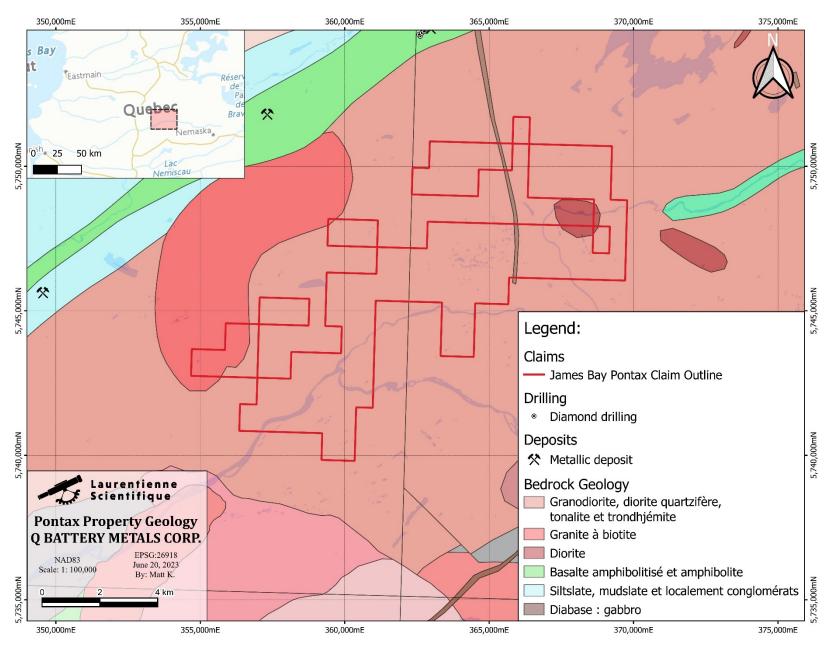
The majority of the property is covered by a shallow glacial layer and dense vegetation, which extends across most of the surrounding region. Modern geophysical techniques, such as magnetics and LiDAR, and geochemical till sampling can effectively penetrate these surface barriers. An extensive surface exploration program encompassing mapping, prospecting, and till sampling should be conducted (see map on page 8 for an example). Additionally, a comprehensive Base of Till (BoT) and top of bedrock sampling program should be implemented to further generate targets and check for pegmatites under the till overburden. These advanced methods enable the identification and targeting of pegmatites beneath the glacial cover and vegetation by creating areas that exhibit high to moderate to weak lithium (Li) and pathfinder element anomalies.

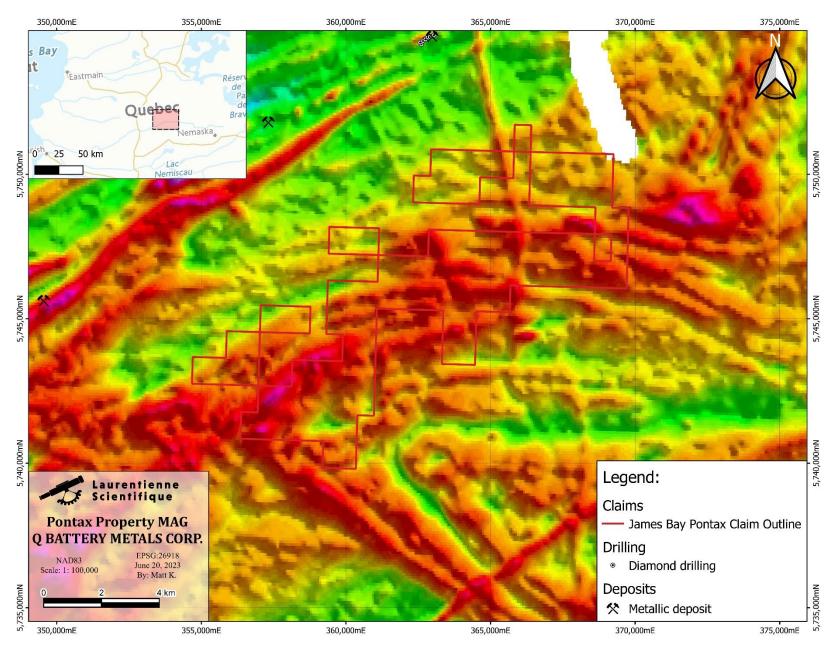
Once these anomalies are generated and field checked with all other compiled data a diamond drill program should commence checking the mineralization at depth.

Conclusion:

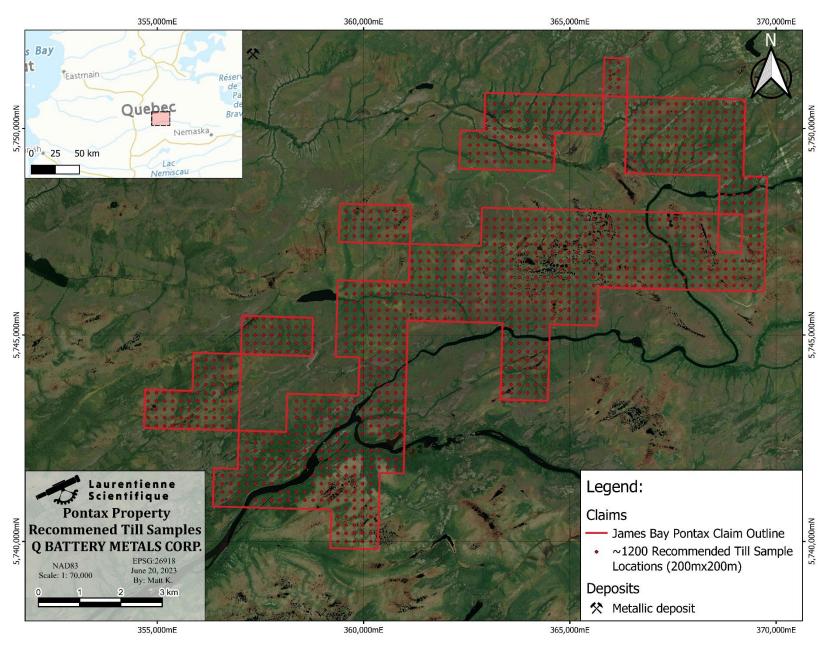

The QMETS Quebec James Bay Pontax lithium property is in line with the expressed goals of the Canadian and U.S. governments, both of which are actively promoting the expansion of a North American lithium sector. In particular, there is a drive to advance green energy and facilitate the mandated transition to electric vehicles. This creates an exceptional opportunity for the industry and its investors, offering the potential for substantial long-term equity growth extending well into the next decade and beyond.


Most lithium deposits are found sitting distally within a 10km radius from the fertile parent felsic intrusion. When multiple phases of intrusion occur, fractionated pegmatites can intrude into the older granitic hosts. This property presents the potential for hosting LCT pegmatites and a lithium deposit due to its vicinity to both potential fertile parent peraluminous granite bodies, as well as being close to other known lithium deposits in the region. These granitic bodies and host lithologies are underexplored and need to be ground truthed for pegmatites and associated zones of increased magmatic fractionization.


It is recommended to conduct a compilation of data and then proceed to reconnaissance and field exploration for this prospective property. Once a fertile granite pluton/pegmatite has been identified, it will be crucial to determine the direction in which it is fractionating. This can be done through additional fieldwork, systematic sampling, and drilling programs. A comprehensive approach will facilitate the cost-efficient development of the property's mineral potential and enable the accurate definition of the potential lithium deposit.


Table 1: Claims Title Numbers for QMETS James Bay Pontax Property

OR IECTIO		CLAIM TITLE NUMBER			CLAIM TITLE NUMBER
OBJECTID	CDC	CLAIM TITLE NUMBER	EA	CDC	CLAIM TITLE NUMBER
1	CDC	2747255	51 52	CDC	2759094
2	CDC CDC	2747256	52 52	CDC CDC	2759095 2750006
3	CDC	2747257 2747258	53 54	CDC	2759096 2759097
4 5	CDC		54 55	CDC	2759097 2759098
	CDC	2747260 2747261	55 56	CDC	2759098 2759099
6 7	CDC			CDC	
8	CDC	2755197 2755198	57 58	CDC	2759100 2759101
9	CDC	2755198	58 59	CDC	2759101 2759102
10	CDC	2755200	60	CDC	2759102 2759103
11	CDC	2755201	61	CDC	2759103
12	CDC	2755202	62	CDC	2759104 2759105
13	CDC	2755203	63	CDC	2759105
14	CDC	2755204	64	CDC	2759100
15	CDC	2755205	65	CDC	2759107
16	CDC	2755206	66	CDC	2759100
17	CDC	2755207	67	CDC	2759109
18	CDC	2751651	68	CDC	2759110
19	CDC	2751659	69	CDC	27591112
20	CDC	2751660	70	CDC	2759112
21	CDC	2751661	71	CDC	2759114
22	CDC	2751662	72	CDC	2759114
23	CDC	2759066	73	CDC	2759116
24	CDC	2759067	73 74	CDC	2759117
25	CDC	2759068	75	CDC	2759118
26	CDC	2759069	76	CDC	2759119
27	CDC	2759070	77	CDC	2759120
28	CDC	2759071	78	CDC	2736705
29	CDC	2759072	79	CDC	2736706
30	CDC	2759073	80	CDC	2736707
31	CDC	2759074	81	CDC	2736708
32	CDC	2759075	82	CDC	2744210
33	CDC	2759076	83	CDC	2744211
34	CDC	2759077	84	CDC	2744212
35	CDC	2759078	85	CDC	2744213
36	CDC	2759079	86	CDC	2748658
37	CDC	2759080	87	CDC	2748659
38	CDC	2759081	88	CDC	2748660
39	CDC	2759082	89	CDC	2748661
40	CDC	2759083	90	CDC	2748662
41	CDC	2759084	91	CDC	2745499
42	CDC	2759085	92	CDC	2745500
43	CDC	2759086	93	CDC	2745501
44	CDC	2759087	94	CDC	2745502
45	CDC	2759088	95	CDC	2745503
46	CDC	2759089	96	CDC	2745504
47	CDC	2759090	97	CDC	2745506
48	CDC	2759091	98	CDC	2745511
49	CDC	2759092	99	CDC	2745512
50	CDC	2759093	100	CDC	2745513
			101	CDC	2745514



Matt Krukowski, P.Geo., B.Sc. mat@waldosciences.com 1-778-868-6288

